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ABSTRACT

This Report discusses the along orbit search, by optical means, for an

........ arificil-sae te.In particular the attempt is made to couch the search

in the existing scenario of optimal search theor . -y. Thfu- ai-ho--ba-done- "...............j

existing and envisaged searches. The reasons for this are explored and some

new concepts of optimality are discussed for real searches. The point is

made that both hardware and software adjustments would be necessary in order '4
to reconfigure optical searches for artificial satellites so that search

theory can be utilized.
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I. INTRODUCTION

The theory of search, as a branch of operations research, had its

beginnings during World War II. This start was made by Bernard Koopman and

his colleagues for the United States Navy on problems related to anti-

submarine warfare. Since then there has been considerable progress in the

theoretical development of searches for non-moving targets.* Some progress

ministic fashion. Lawrence D. Stone has summarized much of the field in hisI book, "Theory of Optimal Search" published in 1975 by Academic Press. This

Report is an introduction to this field of mathematics. I closely follow

Stone's notation. This is to ehable the interested reader to make a smooth

transition to the literature should he care to pursue the subject further.

This Report is not a re-writing of Stone's book. Although I. follow

him in basic definitions and notation, I've chosen to illuminate the concepts

within the framework of an along orbit search for an artificial satellite by

optical sensors. As the Ground-Based Electro-Optical Deep Space Surveillance

(GEODSS) system comes on-line, optical searches for artificial satellites

will become more frequent. An along orbit search is a particularly simple

search that can illustrate how optical searches for artificial satellites fit

into the existing theoretical framework.

Actually such searches don't fit within the existing framework. A minor

problem, for rapid searches on slow moving satellites, is the fact that the

target is moving. When the search is executed slowly or the satellite is

* I deliberately avoid using the adjective stationary because of the special
meaning it has in the artificial satellite context.
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moving quickly, this becomes a major problem. The principal reason that

the mathematical superstructure of optimal search theory is superfluous is

that the optimization problem has been co-opted by the basic design of

existing and currently contemplated searches. I will consider some o- the

reasons for this. This Report can serve as a stimulus for re-thinking why

we search the way we do and whether or not we should modify it to obtain

the benefits of the existing theory.

Given the existence of Stone's book I won't reference any other litera- !

ture herein. All results specifically pertinent to the along-orbit optical

search for an artificial satellite are original.

2
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II. BASIC IDEAS

First we introduce the concept of a discrete search space. The target

is in one of a set J of cells that are taken to be a (possibly infinite) sub-

set of the positive integers. We can obtain a concrete realization of this

in the along orbit optical search problem by imagining that the sensor has a

field-of-view of e radians and that our search lies along the artificial

satellite's orbit. The maximum number of cells is 27/6. Geometrical con-

straints would limit this further. Also most along orbit searches are based

on the assumption that the satellite will be "early" by a maximum amount and

"late" by a maximum amount. This too would limit the maximum number of cells.

The second concept is that of an a priori target distribution. By this

we mean the probability distribution over the search space which summarizes

our knowledge of where the target was likely to be when the search commenced.

We symbolize the target distribution by p(J) where

p(j)c[O,l]VJJ and E p(J)5l
JEJ

In general we allow the target distribution to be defective. In the along

orbit problem we might have to allow for a maneuver of the satellite which

changed its orbital plane. If our search space consisted of only a few cells,

then the satellite might not appear in any of them.

When we search a cell jEJ we expend a certain amount of effort measured

by zc[O,c). The cost of this effort is given by the cost function c(j,z).

Cost may be measured in time or money while effort might represent area

searched or the duration of time spent in a cell. In the along orbit problem

3



effort and cost might be both measured in time. The effort would be simply

the amount of time devoted to searching cell j. The cost would be this time

plus the amount of time necessary to move the telescope to cell j from its

last location. Such a cost function is realistic and does not fit into the

above framework. If the amount of time spent searching in a cell was much

longer than the amount of time required to move to a cell, then we might

ignore the non-local nature of the cost function. We could for instance, use

a cost function of the form c(J,.) - cj+z where cj is the average time to

move to cell j from any other cell in J. At this early stage we've been

forced to make two modifications of real along orbit searches In an attempt

to fit into the formalism; real satellites are moving not fixed and real

cost functions are non-local.

When we expend effort z in cell j we spend cost c(j,z). In return for

this we increase (or at least not decrease) the probability of detection.

We define a detection function b(j,z) that measures this. Specifically

b(j,z) is the conditional probability that after expending effort z in cell

j we will detect the target given that it is in cell J. Note that this

definition of the detection function assumes that the conditional probability

of detection depends only on the total amount of effort expended and not on

the way that the effort was expended. An obvious limitation we must impose

on the cost function c(j,z) is

c(j,z)?O V JEJ, zEO,-)

4
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Clearly we must demand that the detection function satisfy

b(j,z) e[O,l] VjEJ, zc[O,c)

There is a special class of detection functions known as regular detection

functions that are important in the theoretical framework. The detection

function b(J,z) is regular if

(I) b(j,O) = 0 and

(ii) b_ýjz) is continuous, positive, and strictly decreasing vJ•J
az

The first requirement just says that we must expend effort if we are to find

the target. The second requirement implies that b(j,z) is strictly concave

and that the rate of return function p(j,z) = p(j)ab(j,z) diminishes with
dz

increasing effort. The rate of return function tells us which cell yields

the largest increase in probability of detection for a given, small, incre-

ment of effort. A search that always places the next increment of effort in

the cell with the highest rate of return is called locally optimal.

The detection function b(j,z) is something that we could model for a

particular opticdl sensor. Presumabiy it would require only minor approxi-

mations (or perhaps no approximations) for such a detection function to be

regular. As far as I am aware this has not been done. It would turn out to

be superfluous for presently conceived searches though because current hard-

ware constraints are such that one would not change the amount of effort

allocated to a cell during a search. This ab initio fixing of the effort

allocated to a cell (in fact to be the same constant amount for each cell)

5
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co-opts the optimization problem completely. We'll see this more clearly

soon. Moreover, even if this were not the case, many types of artificial

satellite searches have designs which prohibit the design of an optimal

search in the sense discussed below. Searches that define J or searches that

are designed to be leakproof can remove the essential degree of freedom

necessary for the successful, meaningful application of search theory.

So far we have introduced the search space J of cells, the a priori

probability distribution over the search space p(j), the cost of expending

effort z in cell J, c(jz), and the conditional probability of detecting the

target in cell j after expending effort z there, b(j,z). Finally we intro-

duce the concept of an allocation of effort over J, f(j). If we define the

set F(J) by

F : F(J) Set of all non-negative functions f defined on J

then we can formulate the basic search problem.

Suppose we have an allocation of effort f(j) for each cell in the search

space. Then the total cost C[f] of this allocation is

C[f] E c(j,f(j))
jcJ

The total probability of detecting the target with this allocation is P[f],

P[f] E p(j)b(j,f(j))
JEJ

6
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Suppose that the maximum cost is K. The basic search problem is to find

an allocation of effort f*cF such that

C[f*] K

and

P[f*] = max JP~f]: fEF and C[f]sKI

If such an allocation exists then it is said to be optimal for cost K.

Now we can clearly see the critical element of the above mentioned

difficulty. We ignore the fact that the theory is concerned with fixed

targets. We ignore the fact that the theory is capable of dealing only

with local cost functions. We cannot, however, ignore the fact that opera-

tionally we ab initio determine that f(j) is a constant such that C[f] = K.

This stricture removes the free element of the optimization problem. To fit

optical artificial satellite searches within the theoretlcal framework we can

not ab initio declare that f(j) is a constant. In order to free the alloca-

tion of effort requires a re-design of some hardware and software as well

as careful examination of the current demands on artificial satellite searches

(eg leakproofness).

After we introduce one more concept we can turn to the results of

optimal search theory. The final concept is that of a search plan. A search

plan ý(j,t) is a function defined on j•J, t•[O,') which tells us how much

effort has been expended in cell j by time t. If M(t) gives the total effort

available by time t then

E •(jt) = M(t)
j-ej

7



Let ,(M) be thL .,iss of search plans satisfying the above. Then we say that

a search plan p*Eo(M) is uniformly optimal within 4(M) if

P[O*(j,t)] = max IP[ý(j,t)]:OE4(M)I V to

In other words such a search plan q* maximizes the probability of detect;on at

every instant. Under certain conditions one can show that the locally optimal

plan, the uniformly optimal plan, and the plan that minimizes the mean time

to detection are identical.

S,.8



I11. THEORY

Above the basic concepts of search theory in a discrete search space

have been introduced. In this section we shall see how optimal search plans

can be found and computed. No proofs are provided; they are in Stone's book.

Also, as I feel that it's more important to convey the sense of what can be

demonstrated, rather than the details, I've taken some liberties in relaxing

the wording of some of the results. Again see Stone's book for details.

Definition: An allocation of effort f*'F(J) is optimal for cost K if

C[f*]5K and P~f*] - max IP[f]:fcF(J) and C[f]lKI

Theorem: Suppose there exists a Xc[O,=) and an allocation f•eF(J) such

that Crcfl]-< and

P[f*] - XCcff]?P[f] - XC[f] for feF(J) 3C[f]<c

then

P[f*] = max fP[f]:fcF(J) and C[f])C[f*]I

This theorem tells us when an allocation f* is optimal for a given cost

C[f*]. The introduction of the Lagrange multiplier X converts a constrained

optimization problem for the functional P[f] into an unconstrained optimization

problem for P[f]-XC[f]. This device suggests the introduction of the point-

wise Lagrangian

-(JX,z) = p(j)b(j,z)-Xc(j,z) forVJEJJ X,zE[O,c)

9I'



Note that

F. (jX If) :P~f]-XC[f]

jEJ

Theorem: Suppose there exists a X[O,oo) and an allocation f•eF(J) such that

C[f*,]<- and

t(J,X,f*(J)) - max IZ(jX,z):ze[O,-)I VJEJ

then

P[f*J * max IP f]:f F(o) and CifJ:C~ fI

Note that in this simple case once J and X are fixed t(jX,z) is a function

of one variable and the apparatus of ordinary differential calculus may be

used to find its maximum. The above theorems give sufficient conditions

that a particular allocation satisfies the constrained optimization problem.

To go further we must assume a bit more about the detection function and the

cost function. Moreover we say that whenever (X,f*) are such that f*cF(J)

and Xc[O,-) and

Z(JX,f*(J)) = max [C(j,X,z):zC[O,]I VJEJ

that (X,f*) maximizes the pointwise Lagrangian.

Theorem: Let b(j,z) be a concave function of z and c(j,z) be a convex

function of z. Let f*cF(J) and C[f*]c(O,K). Then a necessary and sufficient

condition for f* to be optimal for cost C[f*] is that there exists a XE[O,o)

such that (X,f*) maximizes the pointwise Lagrangian.

10
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Corollary: Let ab(j,z)/az be a decreasing and continuous function of z and

let ac(j,z)/az be an increasing and continuous function of z VjJ. If

f*eF(J) is optimal for cost C[f*]E(O,K) then there exists a X.O such that

= 0 if f*(J) 0 0
p(j) c.b(j,f*(J)) - X ac(j,f*(J))

dz aZ < 0 if f*(J) 0

To complete the elementary part of the theory we need the inverse of

the rate of return function Q(j,z) a p(j) ab(j,z)/az, viz.

p-(j,x) inverse of p(J,z) evaluated at z=x for xE(O,p(j,O)]0 for x >p(J,0)

We also need the function

U(x) - Em P(J,x)
jCJ

and its inverse U'.

Theorem: If c(j,z)=z Vze[O,o) and jEJ and b(j,z) is a regular detection

function then for a fixed cost K0 the allocation

f• = P-1 (J,i) VJEJ

A

where X U ULF(K) is optimal for cost K and C[f] -- K.

Theorem: Under the above conditions the search plan

0* (j,t)= 0 -(i ,U'I(M(t))) VJUJ, t>O

is uniformly optimal for cumulative effort M(t) in ý(M).

air ,,
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Finally define the mean time to find the target when using search plan ¢, i(d).

We can write

ecnwrt ( l-P[ý(j,t)])dt

Theorem: Let the search plan 0* be uniformly optimal in 4(M). Then

The above theorems completely solve the problem of constructing optimal

search plans for regular detection functions and cost functions proportional

to the effort expended. In order to give some life to theory, consider the

along orbit search again. Let there be J cells, let the target distribution

be p(j), and suppose that the detection function b(j,z) =l-exp(-a z), aj?_O.

Note that this detection function is regular. Fix the total cost at K and

let the cost function be c(j,z)=z. We will construct an algorithm for

finding the optimal allocation of effort f(J)=z .

The total probability of detection for allocation f is

J J
P[f] -2 p(j)b(j,f(j)) -• p(j)(1-exp(ajz9)

j=l j--l

The total cost for this allocation is

J J
C[f] *• c(jf(j)) E z

J=l j=l

We seek to maximize P[f] subject to the constraint C[f]-K. We do this by

introducing the Lagrange multiplier X and minimizing P[f]-4C[f] with respect

12
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to (zj. We find that d(P[f]-XCrf])/azj=O implies

p(J )ajiexp (-ajzj) x• vj [Ij]

Hence

zj - (1/aj) n (p(j)aj/X)

Notice that the implicit equation for zj is just p(j,zj) X and that the

solution is just zj = p-'(j,X). Of course, we can only consider non-negative

effort so if p(J)a /X<l, z=O. We determine X from the total cost con-

straint,

K=Z~zj K= • (1/aj) Zn (p(j)aj/X) = U(X)
Jul J-l

where only those terms are included whose argument of the natural logarithm

are 21. This completes thesolution of the problem. To see even more

clearly how the search evolves suppose that the cells are labeled such that

alp(l) a2 P(2) ....... . ap(J)

If the total cost K is small only cell #1 will be searched for p(J)a will

be less than X for J>l. As the total cost increases additional cells will

be searched with the effort partitioned between them according to the above

rules.

13



IV. ADDITIONAL TOPICS

The above theoretical development concerned optimal search plans over

a discrete search space. The amount of effort expended was infinitely

divisible though. A more realistic approach would be to quantify the amount

of effort expended in each cell. All expenditures of effort would then occur

in discrete multiples of the minimum. In optical searches the minimum amount

of effort is the time to form an image with the sensor. Clearly it makes no

sense to allocate an amount of effort (measured in time) that is less than

the single image integration time.

Such searches are known as search with discrete effort. A logical

measure of the cost is the amount of time needed to perform a single look

(form an image) in a cell. The quantity subject to variation in the optimi-

zation problem is the distribution of the number of looks per cell. This is

analogous to the allocation of effort discussed above. One can also carry

over the notion of a locally optimal search. Such a search plan looks in

that cell that yields the highest value for the quantity (increment in pro-

bability)/(increment in cost). If this ratio decreases with the number of

looks (in every cell of the search space), then the locally optimal plan

minimizes the mean time to find the target. If in addition we do measure

cost by the number of looks per cell, then the locally optimal plan is also

uniformly optimal, i.e. it maximizes the probability of detection for any

number of looks >0.

Other topics treated by the theory include whereabouts searches,

optimal search and stop, search in the presence of false targets, the approx-

imation of optimal search plans, some small steps in solving the conditionally

14

.1I



i.

deterministic target motion problem, and Markovian target motion. The

interested reader is referred to Stone's book.
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V. THE ALONG ORBIT SEARCH

Within the framework of currently conceived searches there would appear

to be little left to discuss. One can still pose interesting problems for

along orbit searches depending on one's concept of optimality. In this

Section I'll look at some of the simple problems an along orbit search

presents.

A. Search Scenario

The search is c.-s1x.rained in the following fashion. The search

space is a set of 2N+l, NNO (an integer) field-of-view 0. The fields are

labeled bg n--N, -N+l, ... , N. All searches commence at n= 0, the nominal

position for the artificial satellite. The 2N+l fields lie along the

satellite's orbital plane. The target distribution p(n) is specified. The

restrictions

1 Žp(O)?p(n)?0 Vne[-N,N]

might be imposed with little loss of generality. In addition one might

impose a symmetry constraint p(n) - p(-n)V n•[-N,N].

Each cell is searched with the same amount of effort. Moreover

we assume that the detection function is homogeneous, b(n,z) - b(m,z)

Vn,mE[-N,N]. We define a search plan as a set of 2N+l integers no,n,n 2 ,...

n 2N drawn from [-N,N] subject to the constraints that n0 - 0 and that there

is no repetition. There are (2N)I different search plans of which half are

the reflection of the other half. The cost function we develop below after

we construct a model for the telescope's motion. Then we can pose several

questions: 1) Which search plan takes the least time to complete an

16



examination of all 2N+1 cells?, 2) Which search plan has the highest average

probability of finding the target as a function of time? 3) Which search

plan has the highest aggregate probability of detection for all times during

the search? (The aggregate probability of detection is

P(t) =•p(n)

neM(t)

where M(t) is the set of cells searched by time t.), and 4) Do any of these

matter in real world along orbit optical artificial satellite searches?

B. A Model for the Telescope

In order to define a realistic cost function we need a model for

the telescope motion. For this purpose I assume that when the telescope

starts from rest that it is capable of a maximum constant acceleration a

for a maximum time T. Hence the maximum angular speed of the telescope is

Smar. The telescope can move at the rate of q for an arbitrary length of

time. When the telescope decelerates, it does so at a constant deceleration

6 (6>0) until it comes to rest or a specified angular speed w,ljw:5S.

Suppose that the problem is to move the telescope, initially at

rest at ý=ýi to some other position ý-ýf>Pi where it will again be at rest.

This process can occur In a maximum of three phases. During phase I the

telescope accelerates at the rate of ot for a total time t a. During phase Il

the telescope moves at the constant angular speed wa= ta for a time tc.

During phase III the telescope decelerates at the rate 6 until it reaches a

stop at ý -cf. This takes an addition time td. The total time of the move

is T t a+t c+td. Question: Wnat combination of ta, tc and td minimizes T?

17
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To solve this problem, we need equations of motion for the telescope. r

They are

Phase I: tE[O,ta]

€~~~ ~ t222•b,•a
Phase II: t-ta E[O't 0 t2 + 01 Aa= ata

-u (t-ta) + 4a w Wa

Phase III: t'(ta+tc) E[O'td] bc-" tcf qa ' = Wa

b= -6[t-(ta+tc )12/2 + Wc[t'(ta+tc ] + €c

W [t-(ta+tc)] +ucI I
Set t - ta+tc+td in the Phase III equations and insist that 0 n-l w 0.

One finds

td • •a

where 0¢qf- The total traverse time T is

T -_ta (l+a/6) +
2 a

Considered as a function of ta, T has a single minimum when

t 2 '2 A ,(b

which implies that the coast time, tc is zero. The total time to move an

angular distance A£b is

Tmin * __- _) [Z•I /

18min.



The above assumes that ta < T. Should the above value of t bea a

greater than or equal to T, then the single degree of freedom is removed and

T W-o +

Only for an extremely fast telescope or a very long along orbit search

would ta exceed T.

C. Optimal Searches

The cost function we'll use is the time required to move from the

last cell examined to the cell of interest plus the time spent examining the

cell. The time per cell (- the effort expended) is a constant equal to

tlook' Since the center of cell ne[-N,NJ is at ¢=nO, for ta<T the cost

function for the K'th cell is

[2(a+6)6 InKRnK-I]/2 + tlook

Consider first a complete search (ibe. each cell is examined). Then the

total time to complete the search is

2(•,+6)e 1 21In 1/2 1/2

(2N+1)tlook + U6 1 nlnol + In2 "-nl +

+ In2N n2 N -l I/2}

Clearly when determining an optimal search only the sum of the square roots

are important.

19
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Conjecture: The complete search plan that has the shortest time to complete

is the following (or its reflection): Pick a direction and move in it, one

cell at a time, until the last cell on that side is reached. Next jump, in

the other direction, one cell past the start and repeat the (new) unidirec-

tional one cell at a time traverse. The time to complete is 2N+(N+I) '2-1.

The along orbit searches actually used is an alternating one, eg. n0 =O,

n,1 +l, n2=-l, n3 R+2, n4 = -2, etc. The time to complete is *1
2N

n=l

and therefore very long. This search does build up aggregate probability

quickly though, especially for a sharply peaked, unimodal, symmetric distri-

bution. If the arc of the orbit is long, then this probably isn't optimal

in the sense of maximum aggregate probability. The reason is that since

p(n) falls off rapidly with n but the time to move increases as the square

root of n, for large enough of n it will be better to do cell n+l after

cell n and then jump to cell -n, do cell -(n+l), then jump to cell n+2, etc.

Clearly one needs real numbers for a,6,0, and tlook to decide the question.

The same is true for the highest average probability searches.

D. Does it matter?

Stone references, but does not deal with, the subset of the search

literature concerned with searches along a line. I've briefly looked at it

and it appears to be irrelevant. Finally, unless one has an extremely slow

telescope or contemplates very long (in the sense of arc) along orbit

20



searches, it is doubtful that considerations of optimality really matter.

Note though that implicit in current along orbit searches is the assumption

that p(O) / l, p(+l)" 'lh,or the-satellite maneuvered.

I

I,
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